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Zn is one of the most wide-
spread elements in biology

• Zn is typically coordinated to S (thiolate), N 
(Histidine) or O (water, carboxylate)

• Zn is usually tetrahedral
• Question of interest is determining the 

relative number of S vs. N/O ligands



EXAFS can readily distinguish S 
from N/O ligation

• EXAFS can distinguish ligands that differ by 
ca. 10 in atomic number

However
• There are several examples in which EXAFS 

has overestimated the number of sulfur 
ligands.

• And there are cases where EXAFS has 
underestimated the number of sulfur ligands.



Goal:  Use well-defined model compounds to 
understand limitations of ligation determination

• “Inorganic” – thiolate/imidazole models (S. 
Koch).

• “Peptide” – cysteine/histidine peptide 
models (J. Berg)



XANES spectra depend on Zn ligation
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However, variation 
from sample to 
sample is larger than 
variation from 
ligation to ligation.
(Despite the fact that 
9660 eV feature is 
sometimes identified 
as “characteristic of 
ZnS4 ligation.
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EXAFS shows only small amplitude changes
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FTs do not show 2 obvious shells
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The lack of resolvable peaks is a 
consequence of:

• Unfortunate distances (Zn-N=2.05; Zn-
S=2.3)

• Destructive interference -- ϕN ≈ ϕS + π

This has the result that S and N oscillations 
are nearly out of phase for much of the 
accessible k range





One solution is to measure data over wide k range
(ZnS2N2 inorganic)
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Treat %S as a continuous 
variable

• Define Pi as percent improvement in fit.
• To avoid changes in degrees of freedom, Pi

defined with respect to a fictitious ZnS2S2
fit.

• Dependence of Pi on %S is highly 
characteristic of ligation – Pi=0 means that 
mixed ligation does not give any 
improvement in the fit.
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Dependence of Pi on %S

• Maximum in Pi approximately matches 
expected %S.

• The height of the maximum in Pi increases 
for samples that have authentic mixed 
ligation.

• Pi always increases when a nitrogen 
component is added.



In addition to Pi, σ2 depends on ligation
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Smax (% S giving optimum Pi) depends on E0
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E0 can have pronounced effect on 
apparent ligation

• Sensitivity to E0 is a consequence of the fact 
that the difference between S and N is largely 
encoded in their phase difference.

• E0 is often been treated as a freely variable 
parameter.

• Range of “chemically reasonable” variation has 
been given as ± 20 eV.

• Variation by of E0 by more 3-4 eV from 
calibrated value (9 eV) changes the apparent 
ligation.



XANES spectra contain useful 
information regarding structure

• Quantiative comparisions (e.g., titration) 
requires accurate normalization.

• Correction for various artifacts (self-
absorption) requires accurate normalization.

• Common normalization procedures were 
developed for extracting EXAFS and do not 
necessarily work well for XANES.



Conventional normalization
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Conventionally normalized data
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Alternative is to use a single background 
and tabulated cross-sections
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To avoid sensitivity to XANES features, 
only fit data below and above edge
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Ability to recover data using different 
backgrounds
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Conventional normalization is 
sensitive to background
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Errors in conventional normalization 
affect data even near edge
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Proposed normalization is 
insensitive to background
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Conventional normalization is 
sensitive to range of data
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New method shows only slight 
sensitivity for Emax≥∼150 eV above edge
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Although errors in conventional normaliza-
tion are small, they affect conclusions

• Zn(SR)4
2- dissociates in solution

• Complex can be forced to 100% Zn(SR)4
2-

by addition of excess RS-

• Measure duplicate data for 5 mM Zn(SR)4
2-

with and without added RS-



Conventional normalization
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Proposed normalization method
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Variation in normalization 
obscures chemical effects
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4 possible difference specta –
should all be the same
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With new normalization, 
difference signal is detectable
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International XAFS Society

Report on error analysis.  See 
http://ixs.csrri.iit.edu/

Public comment period – please review and, if 
desired, comment. 


